An Introduction to R

Notes on R: A Programming Environment for Data Analysis and Graphics
Version 4.4.2 (2024-10-31)

W. N. Venables, D. M. Smith
and the R Core Team

This manual is for R, version 4.4.2 (2024-10-31).

Copyright (©) 1990 W. N. Venables

Copyright (©) 1992 W. N. Venables & D. M. Smith
Copyright (© 1997 R. Gentleman & R. Thaka
Copyright (©) 1997, 1998 M. Maechler

Copyright (© 1999-2024 R Core Team

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work
is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into an-
other language, under the above conditions for modified versions, except that this
permission notice may be stated in a translation approved by the R Core Team.

Table of Contents

Preface. 1
1 Introduction and preliminaries............................. ... 2
1.1 The R environment e 2
1.2 Related software and documentation i i 2
1.3 Roand statistics. 2
1.4 R and the window system e 3
1.5 Using R interactively. 3
1.6 An introductory SESSIONttt e e 4
1.7 Getting help with functions and features o i 4
1.8 R commands, case sensitivity, etC.. 4
1.9 Recall and correction of previous commands..............cooiiiiiiiiiiiiiiiiii.. 5
1.10 Executing commands from or diverting output toafile.............. 5
1.11 Data permanency and removing objects...... ... 5

2 Simple manipulations; numbers and vectors................. 7
2.1 Vectors and assignmentouu ittt e 7
2.2 Vector arithmetic 7
2.3 Generating regular SEQUENCES.ttt 8
2.4 Logical vectors. 9
2.5 MISSING VALUES « .« o ottt et e 9
2.6 Character VECLOTSttt e 10
2.7 Index vectors; selecting and modifying subsets of a dataset........................ 10
2.8 Other types of 0bJectso 11

3 Objects, their modes and attributes......................... 13
3.1 Intrinsic attributes: mode and length....... 13
3.2 Changing the length of an object...... i 14
3.3 Getting and setting attributes......... ... 14
3.4 The class of an object. ... i 14

4 Ordered and unordered factors.............................. 16
4.1 A specific eXampleo 16
4.2 The function tapply () and ragged arraysoouueinutinenieniaaeann.. 16
4.3 Ordered factors 17

5 Arrays and matrices........... ... i 18
T L = 18
5.2 Array indexing. Subsections of an array i 18
5.3 Index MatriCes.ttt e 19
5.4 The array() function........ 20
5.4.1 Mixed vector and array arithmetic. The recycling rule........................ 20

5.5 The outer product of tWo arrayst e 21
5.6 Generalized transpose of an arrayoouue it 21
5.7 Matrix facilities. e 22

5.7.1 Matrix multiplicationo e 22

5.7.2 Linear equations and inversioncouiiieeeeiiiiiiiiiiiinaeaeaaan.. 22
5.7.3 Eigenvalues and eigenvectorso 23
5.7.4 Singular value decomposition and determinants................ 23
5.7.5 Least squares fitting and the QR decomposition, 23
5.8 Forming partitioned matrices, cbind() and rbind() L 24
5.9 The concatenation function, c(), with arrays............. ... L. 24
5.10 Frequency tables from factors........... ..o 25
Lists and data frames..........., 26
0.1 ISt . e 26
6.2 Constructing and modifying lists........ ..o i 27
6.2.1 Concatenating Lists. 27
6.3 Data frames o o 27
6.3.1 Making data frames......... ..o 27
6.3.2 attach() and detach() 27
6.3.3 Working with data frames....... 28
6.3.4 Attaching arbitrary lists 28
6.3.5 Managing the search path....... 29
Reading data from files......... ..., 30
7.1 The read.table() function......... ... i e 30
7.2 The scan() fuUnCtiono e 31
7.3 Accessing builtin datasets.oii i 31
7.3.1 Loading data from other R packages........... i i 32
T4 Editing data. e 32
Probability distributions, 33
8.1 R as a set of statistical tables........ i 33
8.2 Examining the distribution of a set of data.......... L. 34
8.3 One- and two-sample tests 36
Grouping, loops and conditional execution 40
9.1 Grouped EXPreSSIONSttt ettt e e 40
9.2 Control statements 40
9.2.1 Conditional execution: if statements...............o i, 40
9.2.2 Repetitive execution: for loops, repeat and while........................... 40
10 Writing your own functions................................. 42
10.1 Simple eXamples.t 42
10.2 Defining new binary operatorso..uiuit i 43
10.3 Named arguments and defaults i 43
10.4 The ‘.. .7 ArUMEN . .. oottt et e 44
10.5 Assignments within functions.......... ... o 44
10.6 More advanced eXamples.t e 44
10.6.1 Efficiency factors in block designst 44
10.6.2 Dropping all names in a printed array............ccoiiiiiiiiii.. 45
10.6.3 Recursive numerical integration i 45
10,7 SCOPE - e ettt e e e 46
10.8 Customizing the environment i e 48

10.9 Classes, generic functions and object orientation 48

11 Statistical models in R........ L. 51
11.1 Defining statistical models; formulae 51
111 Comtrasts . .. vv ettt e e e 53
11.2 Linear modelsot e 54
11.3 Generic functions for extracting model information............... 54
11.4 Analysis of variance and model comparison............. ..o 55
11.4.1 ANOVA tables. . .o e e e e 55
11.5 Updating fitted models ... e 55
11.6 Generalized linear models. ... i 56
11.6.1 Familieso e o7
11.6.2 The glm() function........ ... 57
11.7 Nonlinear least squares and maximum likelihood models.......................... 59
11.7. 1 LeaSt SQUATES « ettt ettt ettt e et e et e e 59
11.7.2 Maximum likelihood 61
11.8 Some non-standard models. 61
12 Graphical procedures............ 63
12.1 High-level plotting commands.o i 63
12.1.1 The plot () function...... ..o e 63
12.1.2 Displaying multivariate data i i 64
12.1.3 Display graphicsoouii 64
12.1.4 Arguments to high-level plotting functions, 65
12.2 Low-level plotting commands ... 66
12.2.1 Mathematical annotation i 67
12.2.2 Hershey vector fonts i e 67
12.3 Interacting with graphics i 67
12.4 Using graphics parameterso.ouuutiint ettt 68
12.4.1 Permanent changes: The par() function o iiiii.. 68
12.4.2 Temporary changes: Arguments to graphics functions 69
12.5 Graphics parameters list i 69
12.5.1 Graphical elements i 70
12.5.2 Axes and tick marks o 71
12.5.3 Figure marginsttt 71
12.5.4 Multiple figure environmentot 73
12.6 Device dTIVETSttt 74
12.6.1 PostScript diagrams for typeset documents...............coiiiiiiiiina... 74
12.6.2 Multiple graphics deviceso e 75
12.7 Dynamic graphicso e 76
13 Packages...........oo 77
13.1 Standard packagesoo i e 7
13.2 Contributed packages and CRAN e e 7
13.3 NaAIESPACES . o ottt ittt ettt et e ettt e 77
14 OS facilities 79
14.1 Files and directoriest e 79
14.2 Filepaths 79
14.3 System commandst 80
14.4 Compression and ATChIVESt 80

Appendix A A sample session.................coiiiiiiiiii.. 82

Appendix B Invoking R 85
B.1 Invoking R from the command line i i 85
B.2 Invoking R under Windows.o 89
B.3 Invoking R under macOS 89
B.4 Scripting with R ... 90

Appendix C The command-line editor 92
C.l Preliminariesttt e e 92
C.2 Editing actions.ou it e 92
C.3 Command-line editor SUMMATYovt e e 92

Appendix D Function and variable index 94

Appendix E Concept index..................................... 97

Appendix F References..................iiiiiiiiiiiii.. 99

Preface

This introduction to R is derived from an original set of notes describing the S and S-PLUS
environments written in 1990-2 by Bill Venables and David M. Smith when at the University
of Adelaide. We have made a number of small changes to reflect differences between the R and
S programs, and expanded some of the material.

We would like to extend warm thanks to Bill Venables (and David Smith) for granting
permission to distribute this modified version of the notes in this way, and for being a supporter
of R from way back.

Comments and corrections are always welcome. Please address email correspondence to
R-help@R-project.org.

Suggestions to the reader

Most R novices will start with the introductory session in Appendix A. This should give some
familiarity with the style of R sessions and more importantly some instant feedback on what
actually happens.

Many users will come to R mainly for its graphical facilities. See Chapter 12 [Graphics],
page 63, which can be read at almost any time and need not wait until all the preceding sections
have been digested.

mailto:R-help@R-project.org

1 Introduction and preliminaries

1.1 The R environment

R is an integrated suite of software facilities for data manipulation, calculation and graphical
display. Among other things it has

e an effective data handling and storage facility,
e 4 suite of operators for calculations on arrays, in particular matrices,
e a large, coherent, integrated collection of intermediate tools for data analysis,

e graphical facilities for data analysis and display either directly at the computer or on hard-
copy, and

e a well developed, simple and effective programming language (called ‘S’) which includes
conditionals, loops, user defined recursive functions and input and output facilities. (Indeed
most of the system supplied functions are themselves written in the S language.)

The term “environment” is intended to characterize it as a fully planned and coherent system,
rather than an incremental accretion of very specific and inflexible tools, as is frequently the
case with other data analysis software.

R is very much a vehicle for newly developing methods of interactive data analysis. It has
developed rapidly, and has been extended by a large collection of packages. However, most
programs written in R are essentially ephemeral, written for a single piece of data analysis.

1.2 Related software and documentation

R can be regarded as an implementation of the S language which was developed at Bell Labora-
tories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of the S-PLUS
systems.

The evolution of the S language is characterized by four books by John Chambers and
coauthors. For R, the basic reference is The New S Language: A Programming Environment
for Data Analysis and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks.
The new features of the 1991 release of S are covered in Statistical Models in S edited by John
M. Chambers and Trevor J. Hastie. The formal methods and classes of the methods package are
based on those described in Programming with Data by John M. Chambers. See Appendix F
[References|, page 99, for precise references.

There are now a number of books which describe how to use R for data analysis and statistics,
and documentation for S/S-PLUS can typically be used with R, keeping the differences between
the S implementations in mind. See Section “What documentation exists for R?” in R FAQ.

1.3 R and statistics

Our introduction to the R environment did not mention statistics, yet many people use R as a
statistics system. We prefer to think of it of an environment within which many classical and
modern statistical techniques have been implemented. A few of these are built into the base R
environment, but many are supplied as packages. There are about 25 packages supplied with
R (called “standard” and “recommended” packages) and many more are available through the
CRAN family of Internet sites (via https://CRAN.R-project.org) and elsewhere. More details
on packages are given later (see Chapter 13 [Packages|, page 77).

Most classical statistics and much of the latest methodology is available for use with R, but
users may need to be prepared to do a little work to find it.

There is an important difference in philosophy between S (and hence R) and the other
main statistical systems. In S a statistical analysis is normally done as a series of steps, with

https://CRAN.R-project.org

Chapter 1: Introduction and preliminaries 3

intermediate results being stored in objects. Thus whereas SAS and SPSS will give copious
output from a regression or discriminant analysis, R will give minimal output and store the
results in a fit object for subsequent interrogation by further R functions.

1.4 R and the window system

The most convenient way to use R is at a graphics workstation running a windowing system.
This guide is aimed at users who have this facility. In particular we will occasionally refer to
the use of R on an X window system although the vast bulk of what is said applies generally to
any implementation of the R environment.

Most users will find it necessary to interact directly with the operating system on their
computer from time to time. In this guide, we mainly discuss interaction with the operating
system on UNIX machines. If you are running R under Windows or macOS you will need to
make some small adjustments.

Setting up a workstation to take full advantage of the customizable features of R is a straight-
forward if somewhat tedious procedure, and will not be considered further here. Users in diffi-
culty should seek local expert help.

1.5 Using R interactively

When you use the R program it issues a prompt when it expects input commands. The default
prompt is >, which on UNIX might be the same as the shell prompt, and so it may appear that
nothing is happening. However, as we shall see, it is easy to change to a different R prompt if
you wish. We will assume that the UNIX shell prompt is ‘$’.

In using R under UNIX the suggested procedure for the first occasion is as follows:

1. Create a separate sub-directory, say work, to hold data files on which you will use R for
this problem. This will be the working directory whenever you use R for this particular
problem.

$ mkdir work
$ cd work

2. Start the R program with the command
$ R
3. At this point R commands may be issued (see later).
4. To quit the R program the command is
> q0)
At this point you will be asked whether you want to save the data from your R session. On
some systems this will bring up a dialog box, and on others you will receive a text prompt
to which you can respond yes, no or cancel (a single letter abbreviation will do) to save

the data before quitting, quit without saving, or return to the R session. Data which is
saved will be available in future R sessions.

Further R sessions are simple.

1. Make work the working directory and start the program as before:

$ cd work
$ R

2. Use the R program, terminating with the q() command at the end of the session.
To use R under Windows the procedure to follow is basically the same. Create a folder as

the working directory, and set that in the Start In field in your R shortcut. Then launch R by
double clicking on the icon.

Chapter 1: Introduction and preliminaries 4

1.6 An introductory session

Readers wishing to get a feel for R at a computer before proceeding are strongly advised to work
through the introductory session given in Appendix A [A sample session], page 82.

1.7 Getting help with functions and features

R has an inbuilt help facility similar to the man facility of UNIX. To get more information on
any specific named function, for example solve, the command is
> help(solve)
An alternative is
> 7solve
For a feature specified by special characters, the argument must be enclosed in double or single
quotes, making it a “character string”: This is also necessary for a few words with syntactic
meaning including if, for and function.
> help("[[")
Either form of quote mark may be used to escape the other, as in the string "It’s
important". Our convention is to use double quote marks for preference.
On most R installations help is available in HTML format by running
> help.start()
which will launch a Web browser that allows the help pages to be browsed with hyperlinks. On
UNIX, subsequent help requests are sent to the HTML-based help system. The ‘Search Engine
and Keywords’ link in the page loaded by help.start() is particularly useful as it is contains

a high-level concept list which searches though available functions. It can be a great way to get
your bearings quickly and to understand the breadth of what R has to offer.

The help.search command (alternatively 7?) allows searching for help in various ways. For
example,
> ?7solve
Try 7help.search for details and more examples.
The examples on a help topic can normally be run by
> example(topic)
Windows versions of R have other optional help systems: use
> 7help
for further details.

1.8 R commands, case sensitivity, etc.

Technically R is an expression language with a very simple syntax. It is case sensitive as are most
UNIX based packages, so A and a are different symbols and would refer to different variables.
The set of symbols which can be used in R names depends on the operating system and country
within which R is being run (technically on the locale in use). Normally all alphanumeric
symbols are allowed! (and in some countries this includes accented letters) plus ‘.” and ‘_’, with
the restriction that a name must start with ‘.’ or a letter, and if it starts with ‘.’ the second
character must not be a digit. Names are effectively unlimited in length.

Elementary commands consist of either expressions or assignments. If an expression is given
as a command, it is evaluated, printed (unless specifically made invisible), and the value is lost.
An assignment also evaluates an expression and passes the value to a variable but the result is
not automatically printed.

1 For portable R code (including that to be used in R packages) only A-Z, a—z, and 0-9 should be used.

Chapter 1: Introduction and preliminaries 5

Commands are separated either by a semi-colon (‘;’), or by a newline. Elementary commands
can be grouped together into one compound expression by braces (‘{’ and ‘}’). Comments can
be put almost? anywhere, starting with a hash mark (‘#’), everything to the end of the line is a
comment.

If a command is not complete at the end of a line, R will give a different prompt, by default

+

on second and subsequent lines and continue to read input until the command is syntactically
complete. This prompt may be changed by the user. We will generally omit the continuation
prompt and indicate continuation by simple indenting.

Command lines entered at the console are limited® to about 4095 bytes (not characters).

1.9 Recall and correction of previous commands

Under many versions of UNIX and on Windows, R provides a mechanism for recalling and re-
executing previous commands. The vertical arrow keys on the keyboard can be used to scroll
forward and backward through a command history. Once a command is located in this way, the
cursor can be moved within the command using the horizontal arrow keys, and characters can
be removed with the DEL key or added with the other keys. More details are provided later: see
Appendix C [The command-line editor], page 92.

The recall and editing capabilities under UNIX are highly customizable. You can find out
how to do this by reading the manual entry for the readline library.

Alternatively, the Emacs text editor provides more general support mechanisms (via ESS,
Emacs Speaks Statistics) for working interactively with R. See Section “R and Emacs” in R
FAQ.

1.10 Executing commands from or diverting output to a file
If commands? are stored in an external file, say commands.R in the working directory work, they
may be executed at any time in an R session with the command
> source("commands.R")
For Windows Source is also available on the File menu. The function sink,
> sink("record.lis")
will divert all subsequent output from the console to an external file, record.lis. The command
> sink()

restores it to the console once again.

1.11 Data permanency and removing objects
The entities that R creates and manipulates are known as objects. These may be variables, arrays
of numbers, character strings, functions, or more general structures built from such components.

During an R session, objects are created and stored by name (we discuss this process in the
next section). The R command

> objects()

(alternatively, 1s()) can be used to display the names of (most of) the objects which are currently
stored within R. The collection of objects currently stored is called the workspace.

2 ot inside strings, nor within the argument list of a function definition

3 some of the consoles will not allow you to enter more, and amongst those which do some will silently discard
the excess and some will use it as the start of the next line.

4 of unlimited length.

To remove objects the function rm is available:
> rm(x, y, z, ink, junk, temp, foo, bar)
All objects created during an R session can be stored permanently in a file for use in future
R sessions. At the end of each R session you are given the opportunity to save all the currently
available objects. If you indicate that you want to do this, the objects are written to a file called
.RData’ in the current directory, and the command lines used in the session are saved to a file
called .Rhistory.

When R is started at later time from the same directory it reloads the workspace from this
file. At the same time the associated commands history is reloaded.

It is recommended that you should use separate working directories for analyses conducted
with R. It is quite common for objects with names x and y to be created during an analysis.
Names like this are often meaningful in the context of a single analysis, but it can be quite
hard to decide what they might be when the several analyses have been conducted in the same
directory.

5 The leading “dot” in this file name makes it ¢nvisible in normal file listings in UNIX, and in default GUI file
listings on macOS and Windows.

2 Simple manipulations; numbers and vectors

2.1 Vectors and assignment

R operates on named data structures. The simplest such structure is the numeric vector, which
is a single entity consisting of an ordered collection of numbers. To set up a vector named x,
say, consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command

> x <- ¢(10.4, 5.6, 3.1, 6.4, 21.7)

This is an assignment statement using the function c() which in this context can take an
arbitrary number of vector arguments and whose value is a vector got by concatenating its
arguments end to end.?

A number occurring by itself in an expression is taken as a vector of length one.

Notice that the assignment operator (‘<-’), which consists of the two characters ‘<’ (“less
than”) and ‘-’ (“minus”) occurring strictly side-by-side and it ‘points’ to the object receiving
the value of the expression. In most contexts the ‘=’ operator can be used as an alternative.

Assignment can also be made using the function assign(). An equivalent way of making
the same assignment as above is with:

> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))
The usual operator, <-, can be thought of as a syntactic short-cut to this.

Assignments can also be made in the other direction, using the obvious change in the assign-
ment operator. So the same assignment could be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) > x
If an expression is used as a complete command, the value is printed and lost?. So now if we
were to use the command
> 1/x
the reciprocals of the five values would be printed at the terminal (and the value of x, of course,
unchanged).
The further assignment
>y <= c(x, 0, x)
would create a vector y with 11 entries consisting of two copies of x with a zero in the middle
place.

2.2 Vector arithmetic

Vectors can be used in arithmetic expressions, in which case the operations are performed element
by element. Vectors occurring in the same expression need not all be of the same length. If
they are not, the value of the expression is a vector with the same length as the longest vector
which occurs in the expression. Shorter vectors in the expression are recycled as often as need be
(perhaps fractionally) until they match the length of the longest vector. In particular a constant
is simply repeated. So with the above assignments the command

>v <-2xx +y + 1

generates a new vector v of length 11 constructed by adding together, element by element, 2*x
repeated 2.2 times, y repeated just once, and 1 repeated 11 times.

1 With other than vector types of argument, such as 1list mode arguments, the action of c() is rather different.
See Section 6.2.1 [Concatenating lists], page 27.

2 Actually, it is still available as .Last.value before any other statements are executed.

Chapter 2: Simple manipulations; numbers and vectors 8

The elementary arithmetic operators are the usual +, -, *, / and ~ for raising to a power. In
addition all of the common arithmetic functions are available. log, exp, sin, cos, tan, sqrt,
and so on, all have their usual meaning. max and min select the largest and smallest elements of a
vector respectively. range is a function whose value is a vector of length two, namely ¢ (min(x),
max(x)). length(x) is the number of elements in x, sum(x) gives the total of the elements in
x, and prod(x) their product.

Two statistical functions are mean(x) which calculates the sample mean, which is the same
as sum(x) /length(x), and var(x) which gives
sum((x-mean(x)) ~2)/(length(x)-1)
or sample variance. If the argument to var() is an n-by-p matrix the value is a p-by-p sample
covariance matrix got by regarding the rows as independent p-variate sample vectors.

sort (x) returns a vector of the same size as x with the elements arranged in increasing order;
however there are other more flexible sorting facilities available (see order() or sort.list()
which produce a permutation to do the sorting).

Note that max and min select the largest and smallest values in their arguments, even if they
are given several vectors. The parallel maximum and minimum functions pmax and pmin return
a vector (of length equal to their longest argument) that contains in each element the largest
(smallest) element in that position in any of the input vectors.

For most purposes the user will not be concerned if the “numbers” in a numeric vector
are integers, reals or even complex. Internally calculations are done as double precision real
numbers, or double precision complex numbers if the input data are complex.

To work with complex numbers, supply an explicit complex part. Thus

sqrt (-17)
will give NaN and a warning, but
sqrt (-17+01)

will do the computations as complex numbers.

2.3 Generating regular sequences

R has a number of facilities for generating commonly used sequences of numbers. For example
1:30 is the vector c(1, 2, ..., 29, 30). The colon operator has high priority within an ex-
pression, so, for example 2*1:15 is the vector c(2, 4, ..., 28, 30). Put n <- 10 and compare
the sequences 1:n-1 and 1: (n-1).

The construction 30:1 may be used to generate a sequence backwards.

The function seq() is a more general facility for generating sequences. It has five arguments,
only some of which may be specified in any one call. The first two arguments, if given, specify
the beginning and end of the sequence, and if these are the only two arguments given the result
is the same as the colon operator. That is seq(2,10) is the same vector as 2:10.

Arguments to seq(), and to many other R functions, can also be given in named form, in
which case the order in which they appear is irrelevant. The first two arguments may be named
from=value and to=value; thus seq(1,30), seq(from=1, to=30) and seq(to=30, from=1)
are all the same as 1:30. The next two arguments to seq() may be named by=value and
length=value, which specify a step size and a length for the sequence respectively. If neither
of these is given, the default by=1 is assumed.

For example

> seq(-5, 5, by=.2) -> s3
generates in s3 the vector c(-5.0, -4.8, -4.6, ..., 4.6, 4.8, 5.0). Similarly
> s4 <- seq(length=51, from=-5, by=.2)

Chapter 2: Simple manipulations; numbers and vectors 9

generates the same vector in s4.

The fifth argument may be named along=vector, which is normally used as the only argu-
ment to create the sequence 1, 2, ..., length(vector), or the empty sequence if the vector
is empty (as it can be).

A related function is rep () which can be used for replicating an object in various complicated
ways. The simplest form is

> sb <- rep(x, times=5)
which will put five copies of x end-to-end in s5. Another useful version is
> s6 <- rep(x, each=b)

which repeats each element of x five times before moving on to the next.

2.4 Logical vectors

As well as numerical vectors, R allows manipulation of logical quantities. The elements of a
logical vector can have the values TRUE, FALSE, and NA (for “not available”, see below). The
first two are often abbreviated as T and F, respectively. Note however that T and F are just
variables which are set to TRUE and FALSE by default, but are not reserved words and hence can
be overwritten by the user. Hence, you should always use TRUE and FALSE.

Logical vectors are generated by conditions. For example
> temp <- x > 13

sets temp as a vector of the same length as x with values FALSE corresponding to elements of x
where the condition is not met and TRUE where it is.

The logical operators are <, <=, >, >=, == for exact equality and != for inequality. In addition
if c1 and c2 are logical expressions, then c1 & c2 is their intersection (“and”), c1 | c2 is their
union (“or”), and !c1 is the negation of c1.

Logical vectors may be used in ordinary arithmetic, in which case they are coerced into
numeric vectors, FALSE becoming 0 and TRUE becoming 1. However there are situations where
logical vectors and their coerced numeric counterparts are not equivalent, for example see the
next subsection.

2.5 Missing values

In some cases the components of a vector may not be completely known. When an element
or value is “not available” or a “missing value” in the statistical sense, a place within a vector
may be reserved for it by assigning it the special value NA. In general any operation on an NA
becomes an NA. The motivation for this rule is simply that if the specification of an operation
is incomplete, the result cannot be known and hence is not available.

The function is.na(x) gives a logical vector of the same size as x with value TRUE if and
only if the corresponding element in x is NA.
>z <- ¢(1:3,NA); ind <- is.na(z)
Notice that the logical expression x == NA is quite different from is.na(x) since NA is not
really a value but a marker for a quantity that is not available. Thus x == NA is a vector of the

same length as x all of whose values are NA as the logical expression itself is incomplete and
hence undecidable.

Note that there is a second kind of “missing” values which are produced by numerical com-
putation, the so-called Not a Number, NaN, values. Examples are

> 0/0
or
> Inf - Inf

Chapter 2: Simple manipulations; numbers and vectors 10

which both give NaN since the result cannot be defined sensibly.

In summary, is.na(xx) is TRUE both for NA and NaN values. To differentiate these,
is.nan(xx) is only TRUE for NaNs.

Missing values are sometimes printed as <NA> when character vectors are printed without
quotes.

2.6 Character vectors

Character quantities and character vectors are used frequently in R, for example as plot labels.
Where needed they are denoted by a sequence of characters delimited by the double quote
character, e.g., "x-values", "New iteration results".

Character strings are entered using either matching double (") or single (’) quotes, but are
printed using double quotes (or sometimes without quotes). They use C-style escape sequences,
using \ as the escape character, so \ is entered and printed as \\, and inside double quotes "
is entered as \". Other useful escape sequences are \n, newline, \t, tab and \b, backspace—see
?Quotes for a full list.

Character vectors may be concatenated into a vector by the c() function; examples of their
use will emerge frequently.

The paste () function takes an arbitrary number of arguments and concatenates them one by
one into character strings. Any numbers given among the arguments are coerced into character
strings in the evident way, that is, in the same way they would be if they were printed. The
arguments are by default separated in the result by a single blank character, but this can be
changed by the named argument, sep=string, which changes it to string, possibly empty.

For example

> labs <- paste(c("X","Y"), 1:10, sep="")
makes labs into the character vector
C("Xl“, IIY2||’ IIXSII’ ||Y4ll, ||x5ll, IIY6||, IIX7|I’ IIY8II’ ||X9ll, ||Yloll)

Note particularly that recycling of short lists takes place here too; thus c("X", "Y") is

repeated 5 times to match the sequence 1:10.3

2.7 Index vectors; selecting and modifying subsets of a data set

Subsets of the elements of a vector may be selected by appending to the name of the vector an
index vector in square brackets. More generally any expression that evaluates to a vector may
have subsets of its elements similarly selected by appending an index vector in square brackets
immediately after the expression.

Such index vectors can be any of four distinct types.

1. A logical vector. In this case the index vector is recycled to the same length as the vector
from which elements are to be selected. Values corresponding to TRUE in the index vector
are selected and those corresponding to FALSE are omitted. For example

>y <= x[lis.na(x)]
creates (or re-creates) an object y which will contain the non-missing values of x, in the
same order. Note that if x has missing values, y will be shorter than x. Also

> (x+1)[(Mis.na(x)) & x>0] -> z

creates an object z and places in it the values of the vector x+1 for which the corresponding
value in x was both non-missing and positive.

3 paste(..., collapse=ss) joins the arguments into a single character string putting ss in between, e.g., ss
<= "|". There are more tools for character manipulation, see the help for sub and substring.

Chapter 2: Simple manipulations; numbers and vectors 11

2. A vector of positive integral quantities. In this case the values in the index vector must lie
in theset {1, 2, ..., length(x)}. The corresponding elements of the vector are selected and
concatenated, in that order, in the result. The index vector can be of any length and the
result is of the same length as the index vector. For example x[6] is the sixth component
of x and

> x[1:10]
selects the first 10 elements of x (assuming length(x) is not less than 10). Also

> c("x","y") [rep(c(1,2,2,1), times=4)]
(an admittedly unlikely thing to do) produces a character vector of length 16 consisting of
"x", "y", "y", "x" repeated four times.

3. A vector of negative integral quantities. Such an index vector specifies the values to be
ezxcluded rather than included. Thus

>y <= x[-(1:5)]
gives y all but the first five elements of x.

4. A vector of character strings. This possibility only applies where an object has a names
attribute to identify its components. In this case a sub-vector of the names vector may be
used in the same way as the positive integral labels in item 2 further above.

> fruit <- c(5, 10, 1, 20)
> names (fruit) <- c("orange", "banana", "apple", "peach")
> lunch <- fruit[c("apple","orange")]

The advantage is that alphanumeric names are often easier to remember than numeric
indices. This option is particularly useful in connection with data frames, as we shall see
later.

An indexed expression can also appear on the receiving end of an assignment, in which case
the assignment operation is performed only on those elements of the vector. The expression
must be of the form vector [index_vector] as having an arbitrary expression in place of the
vector name does not make much sense here.

For example
> x[is.na(x)] <- 0
replaces any missing values in x by zeros and
> yly < 0] <= -y[y < 0]
has the same effect as
> y <- abs(y)

2.8 Other types of objects

Vectors are the most important type of object in R, but there are several others which we will
meet more formally in later sections.

e matrices or more generally arrays are multi-dimensional generalizations of vectors. In fact,
they are vectors that can be indexed by two or more indices and will be printed in special
ways. See Chapter 5 [Arrays and matrices], page 18.

e factors provide compact ways to handle categorical data. See Chapter 4 [Factors], page 16.

e [ists are a general form of vector in which the various elements nee